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ABSTRACT

Jo, Y.-H.; Kim, H.-C.; Hu, C.; Klemas, V.V., and Turpie, K.R., 2019. Potential applications of HyspIRI for the observation
of sea-margin processes. Journal of Coastal Research, 35(1), 227–239. Coconut Creek (Florida), ISSN 0749-0208.

The Hyperspectral Infrared Imager (HyspIRI) mission will observe the effects of future environmental changes upon the
world’s ecosystems. Among other applications, this paper reviews three different sea-margin processes that can be
monitored by the HyspIRI spectrometer, i.e. groundwater and surface-water discharge, meltwater-pond formation, and
shoreline delineation. Groundwater and surface-water discharge to coastal regions affects local ecological conditions
through changes in the local temperature, salinity, and nutrient load. Water-quality changes and temperature
variability resulting from such discharge can be estimated from observation in the visible-to-shortwave-infrared
(VSWIR) and the mid- and thermal-infrared (TIR) regions, respectively. The processes of meltwater forming ponds and
entering the sea have unique ecological characteristics and are of additional interest because they are also highly subject
to climate change. HyspIRI can use TIR to observe the spatial distribution of meltwater, whereas its VSWIR
spectrometer can be used to quantify the changes of phytoplankton pigments (e.g., chlorophyll a). Quantifying sea-
margin changes requires accurate delineation of margin positions wherein tidal influence is minimal. Since the HyspIRI
VSWIR data cover a wide spectral range and offer high spatial resolution, they are particularly suitable for shoreline
delineation/change detection, as well as flood mapping. The signal-to-noise ratio of HyspIRI is expected to be comparable
to that of the Hyperspectral Imager for the Coastal Ocean and much higher than that of Hyperion and Landsat
Enhanced Thermal Mapper Plus, making it suitable for studying optically complex coastal aquatic environments.
Herein, using examples from existing satellite sensors, HyspIRI’s potential to study these complex sea-margin processes
is presented and discussed.

ADDITIONAL INDEX WORDS: Hyperspectral Infrared Imager, groundwater, ice, shoreline remote sensing.

INTRODUCTION
The margins of a sea are not static, and they are subject to

natural and human changes. Accordingly, observations of the

boundaries between water and land (Leote, Ibanhez Severino,

and Rocha, 2008) and water and ice (Muller-Karger, 1984;

Muller-Karger and Alexander, 1987; Muller-Karger, McClain,

and Ray, 1987; Muller-Karger et al., 1990) can reveal changes

in the margin position and environmental characteristics such

as cross-margin material flux (dissolved or suspended), littoral

currents, and near-margin ecological attributes. These sea-

margin processes can occur on gradual (e.g., resulting from sea-

level rise) or dramatic (e.g., disturbances such as severe storms)

timescales. Thus, in the following paragraphs, three different

sea-margin processes are reviewed that can be observed with

the various remote-sensing sensors: groundwater and surface-

water discharge, meltwater-pond formation, and shoreline

delineation.

First, the variation of terrestrial freshwater flux across the

boundary via groundwater or surface-water discharge can

influence the transport of nutrient flux into coastal waters

(Childers et al., 2006). In particular, the increased supply of

nutrients following groundwater discharge after hurricanes

has been speculated to be linked to harmful algal blooms in

coastal waters off central Florida (Hu, Muller-Karger, and

Swarzenski, 2006) and Masan Bay in South Korea (Lee and

Kim, 2007), and it has been interpreted as a potential precursor

to increased bacterial concentrations in the surf zone (Boehm,

Shellanbarger, and Paytan, 2004). However, detecting loca-

tions and quantifying the contributions of groundwater
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discharge into coastal waters are challenging because field

observations are limited. Thus, remote sensing has proven to be

useful for monitoring groundwater discharge using tempera-

ture differences between coastal water and groundwater

(Schubert et al., 2014).

Groundwater discharge has also been considered as a

potentially significant source of diffuse nutrients, dissolved

substances, and diffuse pollution in coastal regions (Leote,

Ibanhez Severino, and Rocha, 2008). Anthropogenic materials,

such as pesticides, herbicides, chemical fertilizers, and petro-

leum products, are common groundwater pollutants (Nowack,

Xue, and Sigg, 1997). These pollutants usually enter ground-

water when polluted water percolates down from the ground

surface (Hildebrandt et al., 2008). Relatively small groundwa-

ter discharge rates can deliver comparatively large quantities

of nutrients and pollutants to coastal areas (Konstantinou,

Hela, and Albanis, 2006; Sangodoyin and Agbawhe, 1992).

Leaking underground storage tanks are another major source

of groundwater pollution (Grose et al., 1995; Moseley and

Meyer, 1992). It is estimated that there are millions of

underground storage tanks in the United States. Agricultural

and lawn applications of fertilizers also present a major diffuse

source of nutrients that can enter coastal and inland waters

through groundwater discharge. Accordingly, monitoring and

detecting contaminated groundwater discharge into coastal

regions are critically important for sustaining a healthy

ecosystem.

Groundwater discharge can be observed as follows. The

temperature of such groundwater is almost constant through-

out the year, and the use of thermal remote sensing to delineate

groundwater discharge to coastal regions has been reported.

Research has been conducted in Chesapeake Bay (Banks,

Paylor, and Hughes, 1996), Cape Cod (Portnoy et al., 1998),

Delaware’s Inland Bays (McKenna, Andres, and DeLiberty,

2001; Ullman and Miller, 2004; Wang, McKenna, and DeLib-

erty, 2008), the Great Bay Estuary (New Hampshire) and

Waquiot Bay (Massachusetts) (Roseen, Brannaka, and Balles-

tero, 2001), and Hawaii (Johnson et al., 2008).

Second, another relevant sea-margin process is ice-margin

environmental change. Global warming is altering the timing,

rate, and extent of formation, melting, and breaking of ice

packs and ice shelves at high latitudes. As ice melts, freshwater

strongly affects the phytoplankton ecology. Phytoplankton

form blooms within the ice near its edges (Muller-Karger,

1984; Muller-Karger and Alexander, 1987; Muller-Karger,

McClain, and Ray, 1987; Muller-Karger et al., 1990), and these

blooms can be strongly affected by climate change (Perrette et

al., 2011). Accordingly, it is critically important to study

phytoplankton in ice pools (Lee et al., 2012) using meltwater

optical properties, which can provide information regarding

the resulting biological response through observation of

phytoplankton-pigment changes and changes in that environ-

ment as a result of climate change.

Ice-margin processes can be observed as follows. Several

different remote-sensing observations have been performed on

the ice margin. While Drüe and Heinemann (2005) used the

Moderate Resolution Imaging Spectroradiometer (MODIS) and

in situ examination to assess sea-ice concentrations, Shi et al.

(2012) extracted sea-ice information from the surface temper-

ature based on the National Oceanic and Atmospheric

Administration (NOAA) Advanced Very High Resolution

Radiometer (AVHRR) and obtained the relationship between

ice thickness and reflectivity by an empirical formula.

Furthermore, while Meyer et al. (2011) introduced an approach

to map the fast-ice extent on land using L-band synthetic

aperture radar (SAR), Ozsoy-Cicek et al. (2011) verified by field

survey that active microwaves can monitor the ice edge and

floating ice.

Shoreline variation is the third sea-margin process that can

cause changes to littoral and coastal ecologies, beach nourish-

ment, and coastal currents and can affect navigation and

coastal properties. Numerous natural and anthropogenic

processes can result in shoreline changes, including sea-level

change, hurricanes, coastal circulation, riverine-discharge

patterns, beach nourishment, and sand dredging (Wu, 2007).

Such changes may affect coastal-zone resilience against storm

surges and flooding, with significant impacts upon ecosystem

health and species diversity (Desantis et al., 2007). Such

changes may also have important socioeconomic consequences

on local residents and tourism. Thus, it is important to assess

shoreline changes periodically for management decisions such

as beach nourishment (e.g., location and frequency). Likewise,

flooding (or drought) events from either extreme weather or

poor management (e.g., damage of a levee) often lead to

property loss, economic hardship, and risk to human lives. In

addition, rapid changes of dry/wet conditions can change the

surface-exposure periods to water and sunlight, therefore also

influencing the local ecosystem (e.g., Kanai et al., 2002).

Accurate estimation of flood patterns is an important first step

in flood-control, search-and-rescue, land-use-planning, and

ecological-conservation efforts.

It is widely accepted that sea level is rising worldwide, with a

current average rise of 3.1 mm/y (Church et al., 2010; Song and

Colberg, 2011; Stammer et al., 2013). The effects of sea-level

rise include an increase in the impact of storm surges and wave

action, increased inundation events in flood-prone areas, loss of

tidal wetlands and riparian habitats, and increased vulnera-

bility of upland areas (Klemas, 2009). Sea-level rise can cause

higher water tables and saltwater intrusion, adversely affect-

ing habitats, drinking water, irrigation systems, and septic

systems (Chang et al., 2011).

The shoreline changes can be observed as follows. Shoreline

changes can be obtained from ground surveys (Morton et al.,

1993), airborne polarimetric SAR (Yeremy et al., 2001), and

contouring methods with LIDAR digital elevation models

(DEMs) (Li, Ma, and Di, 2002; Liu, Sherman, and Gu, 2007;

Robertson et al., 2004; Stockdon et al., 2002; White, 2007; White

et al., 2010), as well as a combination of LIDAR DEMs, satellite

images, and orthoimages (Lee, Cheng, and Li, 2010; Lee, Wu,

and Li, 2009). At present, the most common means of

extracting shorelines is based on spaceborne sensors. Such

methods include intertidal DEMs interpolated from water-

level–referenced instantaneous-shoreline information (Hoja et

al., 2000), intertidal DEMs using the waterline method based

on European Remote Sensing-1 (ESR-1) SAR images (Mason,

Davenport, and Flather, 1997; Mason et al., 1995, 1998, 2001),

DEMs generated from IKONOS imagery (Muslim and Foody,

2008), and snake-based tide-coordinated shorelines (Li et al.,
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2006). Furthermore, different spatial and temporal resolutions

of satellite imagery have also been used for shoreline-change

detection (Zimmerman and Bijker, 2004). Accordingly, the

shorelines estimated from remote-sensing satellite-sensor

imagery have been frequently updated (Cendrero and Fischer,

1997; Dekker et al., 1992; LaValle and Lakhan, 2000; Stauble,

2003).

It is worth noting that while multispectral remote-sensing

observations could provide optical properties of sea-surface

changes, microwave and RADAR/LiDAR measurements enable

estimations to be made for sea-ice concentrations along sea-ice

boundaries and sea-surface roughness resulting from ground-

water discharge near shores, which enable three sea-margin

processes to be studied, respectively. Furthermore, the hyper-

spectral measurements can provide better spatial and spectral

resolutions to determine the characteristics of sea-surface

information, meltwater-pond formation, and shoreline changes

(including mudflat constituents). Therefore, integrating all

remote-sensing measurements (multispectral, microwave, RA-

DAR/LiDAR, and hyperspectral measurements) will allow

understanding of very detailed small-spatial-scale sea-margin

processes, but also large features of sea-margin boundaries.

Hyperspectral remote sensing is an efficient tool for

observing the changes that occur on these boundaries at both

local and synoptic scales. The National Aeronautics and Space

Administration (NASA) of the United States launched the first

spaceborne hyperspectral sensor, Hyperion, with 220 contigu-

ous spectral bands, in 2000 (https://eo1.usgs.gov/sensors/

hyperion); in 2001, the European Space Agency launched the

Compact High Resolution Imaging Spectrometer (CHRIS), a

programmable sensor with up to 63 bands (https://earth.esa.

int/web/guest/missions/esa-operational-eo-missions/proba/

instruments/chris), and the Naval Research Laboratory built

and launched the Hyperspectral Imager for the Coastal Ocean

(HICO) in 2009 (http://hico.coas.oregonstate.edu/). Except for

HICO, none of the spaceborne hyperspectral sensors launched

so far has been designed to have a signal-to-noise ratio (SNR)

optimized for the optically complex coastal aquatic environ-

ment. HICO is a low-cost prototype sensor that was developed

as a demonstration mission with on-demand image acquisition

and was not designed to provide global coverage on a regular

basis. Unfortunately, HICO ended operations due to an X-class

solar storm in September 2014 (http://hico.coas.oregonstate.

edu/) (Table 1).

Although observations of specific targets depend on different

spatial, temporal, and spectral resolutions, the Hyperspectral

Infrared Imager (HyspIRI), a planned mission, can provide

global coverage at a high spectral resolution (HyspIRI-TIR

Science Working Group Report, 2007). The HyspIRI mission

includes two instruments: an imaging spectrometer for

observations in the visible-to-short-wave-infrared (VSWIR)

region (380–2500 nm) in 10 nm contiguous bands, and a

multispectral imager for observations in the mid- and thermal-

infrared (TIR: 3–12 lm) bands. The VSWIR and TIR instru-

ments both have a minimum spatial resolution of 30 m. The

VSWIR will have a revisit period of 16 days, and the TIR will

have a revisit period of 5 days (Table 1). The comparisons

between different sensors and HyspIRI are summarized in

Table 2.

In addition, with HyspIRI’s high spectral resolution com-

bined with a relatively high SNR, the sensor can provide

information regarding optically active constituents of water

columns, thus allowing for measurement of the concentrations

of phytoplankton pigments, colored dissolved organic matter,

and suspended-particle concentrations and compositions

(Devred et al., 2013). Combined with simultaneous measure-

ments of surface temperature from HyspIRI’s thermal bands,

episodic observations of the biological response to terrestrial

groundwater and surface-water nutrient flux or meltwater can

be made. Furthermore, under ideal conditions, shorelines can

also be discriminated by near-infrared (NIR) or short-wave-

infrared (SWIR) observation, since deep water has very low

NIR reflectance, and, conversely, most beaches along shore-

lines tend to be relatively bright (e.g., whether they are

composed of sand or have a heavy vegetation cover).

Although various topics for HyspIRI applications were

reviewed extensively in a special issue of Remote Sensing of

Environment (Hochberg et al., 2015), this paper mainly focuses

on three different sea-margin processes, evaluating how

HyspIRI addresses these problems with existing satellite

sensors using specific algorithms. In particular, the advantages

of using HyspIRI’s hyperspectral bands to extract three

different sea-margin processes are discussed in the following

section. These processes include (1) groundwater and surface-

water discharge, with examples of Landsat thermal measure-

ments and yellow fluorescence from HICO in the coastal

regions, (2) ice-margin environment change, with examples of

the Greenland Ice Sheet and sea ice from MODIS and sea-ice

concentration from the Special Sensor Microwave Imager

(SSM/I), and (3) shoreline changes, with examples of shoreline

change measurements from Landsat, and mudflat character-

istics, shallow-water bathymetry, and seagrass leaf area index

(LAI) from the Hyperspectral Imager. Since HyspIRI may be of

use in geomorphology research, a discussion of its challenges,

limitations, and potential solutions is also presented, followed

by an overall conclusion.

RESULTS
In this section, prospective HyspIRI observations of sea-

marginal processes are reviewed. These processes include

groundwater and surface-water discharge, changes to the ice-

margin environment, and shoreline changes and floods.

Groundwater and Surface-Water Discharge
Figure 1 shows groundwater discharge locations that have

been identified with Landsat thermal data over Delaware on

the northern shore of Rehoboth Bay west of the Lewes, in the

Rehoboth Canal, on the Herring and Guinea Creeks, and on the

north shore of Indian River Bay near Oak Orchard (Wang,

McKenna, and DeLiberty, 2008). The identified locations are

consistent with other measurements of groundwater discharge.

However, to analyze the ecological impact of groundwater and

surface-water discharge upon complex coastal water areas,

biogeochemical water constituents need to be observed. Since

the discharged groundwater can be easily mixed with coastal

water, temperature variability measured by Landsat alone is

insufficient, suggesting that more spectral measurements are

required to estimate various biogeochemical water properties

Journal of Coastal Research, Vol. 35, No. 1, 2019

HyspIRI for Observing Sea-Margin Processes 229



(Becker, 2006). In other words, to determine the spatial extent

of groundwater discharge in such a region, many remote-

sensing observations (or field surveys for surface-water

temperature) are required. In particular, Devred et al. (2013)

proposed applications of HyspIRI to coastal and inland water

observation. The present study provides an overview of how the

HyspIRI mission could enable the retrieval of new aquatic-

biophysical products.

The difficulty in quantifying the diffuse sources of pollutants

into estuarine and lacustrine waters has limited the regulation

and management of coastal and inland water quality (Barbier,

2008). The combination of high-spatial-resolution hyperspec-

tral VSWIR and thermal information from HyspIRI offers a

unique opportunity to map groundwater and surface-water

discharge sites and their effects upon surrounding biological

processes. Furthermore, the combination of HyspIRI data, GIS

data, and field measurements can offer an unprecedented

capability to characterize groundwater-flow systems and

discharge-recharge relationships.

Another example is the detection of a Karina brevis (red tide)

bloom due to groundwater discharge in regions at less than 50

m depth on the west Florida shelf using MODIS imagery (Hu,

Muller-Karger, and Swarzenski, 2006). Hu, Muller-Karger,

and Swarzenski noted that several factors may have contrib-

uted to the 2005 red tide, including the 2004 hurricanes and

their associated heavy rain, runoff, and submarine (below the

ocean floor) groundwater discharge. They used MODIS

imagery and observations from ships, buoys from NOAA, and

geochemical tracers to study the red tide. Although it would be

difficult to assess groundwater discharge directly using

HyspIRI measurements for this region, the mission’s high

spatial and spectral resolutions enable observations of both K.

brevis and Trichodesmium (a precursor to K. brevis) blooms at

higher resolution compared to MODIS, thereby providing

unprecedented information on studies of nutrient and carbon

cycles in coastal oceans, with submarine-groundwater dis-

charge being an integrated component of these cycles.

A specific example is shown in Figure 2. Figure 2a shows a

type of bloom that cannot be distinguished by MODIS’s

limited spectral bands; Figure 2b presents a hyperspectral

HICO image showing characteristic yellow fluorescence due

to the phycoerythrin pigment within the dominant chloro-

Table 1. Specifications of five satellite sensors.

Specification Landsat†
Hyperion‡

(SWIR and VNIR) HICO§ MODIS Aqua||

HyspIRI¶

VSWIR TIR

History 1972– 21 November 2000 2009–2014 2002– Planned 2020

Spatial resolution 30 m for Landsat 8

100 m for TIRS

of Landsat 8

30 m 90 m 250 m (bands 1–2)

500 m (bands 3–7)

1 km (bands 8–36)

30 m (depth ,50 m)

1 km (depth .50 m)

60 m (depth ,50 m)

1 km (depth .50 m)

Temporal resolution 16 days 16 days

7.5 3 200 km

scene per orbit

50 3 200 km

scene per

orbit

1–2 days 16 days

Rapid response

3 days

5 days

Rapid response

3 days

Spectral bands 11 (Landsat 8) 220 128 36 213 7

Spectral wavelength

range

483–2215 nm 0.4–2.5 lm 380–960 nm Multispectrum 380–2500 nm 3–12 lm

Bandwidth 10 nm 5.7 nm Varies 10 nm 0.08–0.52 lm

Signal-to-noise ratio 161 (550 nm)

147 (700 nm)

110 (1125 nm)

40 (2125 nm)

.200 to 1 880 (405–420 nm)

516 (862–877 nm)

SNR of HyspIRI is better than that of

Hyperion and comparable to that of HICO

†http://landsat.gsfc.nasa.gov/
‡http://www.crisp.nus.edu.sg/~research/tutorial/eo1.htm
§http://hico.coas.oregonstate.edu/
||http://modis.gsfc.nasa.gov/about/specifications.php
¶Devred et al. (2013)

Table 2. Comparisons between HyspIRI and other sensors.

Three Marginal

Sea Processes

Necessary

Observations

Potential Satellite Sensors

Landsat Hyperion HICO MODIS

Groundwater

discharge

SST and biogeochemical

constituents

Landsat is comparable

to HyspIRI, but no

biogeochemical

constituent

measurements

available.

HyspIRI VSWIR provides

complete coverage over

the entire globe every

16 days. It would take

Hyperion 100 years to

acquire what HyspIRI

measures in 1 year.

HyspIRI TIR provides

complete coverage every

5 days.†

HICO is comparable

to HyspIRI, but no

thermal information

available.

MODIS is not

comparable to

HyspIRI

for spatial

nd spectral

resolution.

Ice margin SST and Chl a

Shoreline

changes

Water-land boundary

and sediment

characteristics

SNR of HyspIRI is better than that of Hyperion and MODIS (Hu et al., 2012, their figure 8) and Landsat ETMþ (Hu et al., 2012, their figure 7) and comparable

to that of HICO (Lucke et al., 2011).
†http://hyspiri.jpl.nasa.gov/downloads/2014_Workshop/day1/3_Pres_HyspIRI_WS14_Comprehensive_Report_overview_20141013b.pdf
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plasts of the ciliate Mesodinium rubrum. The higher spatial

resolution of the HICO image allows small, concentrated

patches of yellow-fluorescing Mesodinium to be observed.

Due to limitations in spectral resolution, prior remote-

sensing (such as MODIS) studies of M. rubrum have been

based on either nonspecific markers of darkened water or on

general absorption of green light (520–600 nm) (Garcia,

Purdie, and Robinson, 1993).

In certain cases, hyperspectral measurements can help to

reveal comprehensive changes in the coastal regions due to

groundwater discharge. For instance, the impacts of ground-

water upon coastal ecosystems were also studied using the

Compact Airborne Spectrographic Imager 550 (CASI-550)

sensors (Kolokoussis et al., 2011). That study used turbidity-

related inherent optical properties (IOPs) for water to

demonstrate that turbidity can be effectively estimated using

certain band ratios or feature-extraction methods and conclud-

ed that the hyperspectral data were the most appropriate for

detecting relatively small submarine-groundwater discharges,

which were not detected under thermal imagery, due to the

increase in turbidity that these discharges cause. This was

confirmed by the strong correlations between the hyperspectral

data and the in situ–measured turbidity-related water IOPs.

Likewise, since groundwater discharge affects water quality

in coastal regions, hyperspectral remote sensing has been used

to monitor water quality–related properties (Ammenberg et al.,

2002; Flink, Lindell, and Ostlund, 2001; Galvao et al., 2003;

Gould and Arnone, 1997; Hakvoort et al., 2002; Kallio et al.,

2001; Lee et al., 1994; Ostlund et al., 2001; Yang and Pan,

2007). These properties can be used to study the possible

consequences of groundwater discharge, provided that such

discharge data can be obtained from other measurements or

models.

As a result, HyspIRI measurements with two instruments,

VSWIR and TIR, will enable groundwater- and surface-water

discharge areas to be identified and the ecological changes in

the complex coastal water to be analyzed.

Ice-Margin Environment
Melting ice around the polar regions is not a local but a global

phenomenon, thus requiring synoptic remote-sensing assess-

ment. Figure 3 shows MODIS/Terra imagery of the Greenland

Ice Sheet, taken on 30 August 2008. The image reveals the

Figure 1. Groundwater-discharge areas in the Delaware Inland Bays identified using Landsat-7 imagery acquired on 19 February 2002. This figure is adopted

from Wang, McKenna, and DeLiberty (2008).
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eastern margin of the ice sheet, bare rocks of the coastline, and

fragments of sea ice floating on the ocean surface. The ice

sheet’s margin appears pale blue-gray, suggesting that it may

be saturated with water. Deeper blue pools of standing

meltwater dot the ice sheet’s surface. To monitor the melt

pond, the 250 m spatial resolution of MODIS’s true-color image

may be insufficient. Thus, higher spatial and spectral resolu-

tions provided by HyspIRI can enhance the ability to monitor

melt ponds as well as ice margins.

The top panel of Figure 4 shows swirls of sea ice along the

crumbling edge of the consolidated ice pack, while the bottom

panel reveals a bloom in the Chukchi Sea northwest of Alaska

on 10 July 2011. The image is based on satellite ocean-color

observations of the reflected light, which were used with

inversion algorithms to estimate the chlorophyll concentration

(CHL). Algal biomass was exported from melting ice or ponds

(Boetius et al., 2013; Lee et al., 2012).

To facilitate monitoring of this important phenomenon,

HyspIRI provides hyperspectral and high-resolution data (30

m), thus removing uncertainties in atmospheric correction and

bio-optical inversion and leading to a more accurate assess-

ment of blooms near the ice edge. David et al. (2015) introduced

the atmospheric correction based on the theoretical approach,

which is grounded in the atmospheric-removal (ATREM)

algorithm. Combined with other data such as sea-surface

temperature (SST), which can be estimated by HyspIRI or

other satellites, HyspIRI provides a powerful tool for quanti-

fying the impact of ice melt upon the nearby water.

Monitoring the ice-margin environment, including melted

areas, is very important for predicting future climate change.

To detect melted areas, Chylek et al. (2007) reported the melt-

area-detection index (MADI) using MODIS measurements,

where:

MADI ¼ R670=R2100 ð1Þ

Here, R670 is the reflectance in MODIS band 1 (645 nm), and

R2100 is the reflectance in band 7 (2300 nm). Similarly, MADI

based on HyspIRI measurements can be employed to obtain

better results because of HyspIRI’s higher resolution.

In addition to MADI from Eq. (1) for detecting melting areas,

hyperspectral remote sensing is very promising for studying

not only the structure of the ice margin but also the

biogeochemical constituents resulting from melting ice. Hyper-

Figure 2. (a) Estimation of fluorescence line height for Chl a fluorescence

patches at a resolution of 1 km from the MODIS Terra sensor at west Long

Island Sound on 23 September 2012. (b) Mesodinium cells in HICO imagery

from the International Space Station reveal characteristic yellow fluores-

cence on 23 September 2012. This figure was adapted from H. Dierssen.

Figure 3. MODIS imagery acquired on 30 August 2008 over northeastern Greenland. Several melt ponds are indicated. Deeper blue pools of standing meltwater

dot the ice sheet’s surface. (http://earthobservatory.nasa.gov/IOTD/view.php?id¼35696)
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spectral remote images contain nearly continuous spectral

information and abundant spatial information; thus, hyper-

spectral remote sensing offers higher target-recognition capa-

bilities and can significantly improve target-detection

accuracy. Many methods have been developed to classify

hyperspectral images, which can be grouped into two main

Figure 4. MODIS images showing a bloom in the Chukchi Sea northwest of Alaska on 10 July 2011. The top panel shows a red-green-blue (RGB) composite

image, and the lower panel shows chlorophyll concentrations. Image is courtesy of Jesse Allen, NASA Earth Observatory team (http://www.climate.g.,ov/news-

features/features/melt-pond-skylights-enable-massive-under-ice-bloom-arctic).

Figure 5. Climatology of Antarctic sea-ice concentration in February (minimum) and September (maximum) from 1991 to 2011. The percentage of sea ice

covering the ocean surface is derived from the microwave SSM/I data obtained from the National Snow and Ice Data Center (12.5 km resolution).
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types (Kuo and Landgrebe, 2002; Mianji and Zhang, 2011):

unsupervised classification and supervised classification. For

instance, Han et al. (2015) reported that hyperspectral imaging

is suitable for monitoring the sea ice, which contains

continuous spectral information and has superior target-

recognition ability. To classify hyperspectral sea-ice images,

they used an active-learning (AL) algorithm, which is a neural-

network algorithm. The AL algorithm with hyperspectral

imaging offers the highest classification accuracy (89.3%) of

all algorithms.

Figure 5 illustrates the sea-ice concentration based on SSM/I

measurements and shows that the climatological sea-ice

concentrations in February (summer) and in September

(winter) are very different. The surface area of sea ice exceeded

80% in September, making it about five times higher than that

in February. Variations in both sea-ice and ice-shelf coverage

around Antarctica play important roles in driving ecological

changes. To analyze ecosystem changes due to melting ice, high

spatial and spectral resolutions are required. While passive-

microwave measurements can identify ice changes over large

areas, observations derived from HyspIRI enable ecosystem

changes such as CHL and SST to be analyzed in detail.

Figure 6 shows an example of the use of 10 year MODIS CHL

standard deviations to examine the biological responses to

seasonally melting ice. Higher values of standard deviation

appeared in the polynyas, which contain open water from

spring to summer but are covered by ice in winter, indicating

changes in ocean biology due to seasonal ice melting. Although

ice-marginal environments are considered to be among the

most important areas for understanding ecosystem changes

through climate change, limited observational research has

been conducted. The most appropriate remote-sensing tech-

nique for studying the ice-margin environment requires

spectral ranges from VSWIR to TIR, which can be enabled by

the HyspIRI mission.

Although HyspIRI is an appropriate sensor for studying both

thermal and biogeochemical constituents around ice edges, it

faces challenges due to its low revisit frequency, low irradiance

(and therefore lower SNR for the sensor), and atmospheric-

adjacency effects, which may cause stray light to impinge upon

the instrument. However, these problems may be compensated

by the higher revisit frequency in the polar regions (about 5

days, rather than 16) and the low sun glint at these latitudes.

Shoreline Changes and Floods (Disturbances)
Shoreline changes and floods are also important for estimat-

ing marginal disturbances. Thus, extraction of shoreline

changes from satellite measurements requires accurate delin-

eation of waterline positions on image time series wherein tidal

influences are minimal. Several methods have been proposed

and used to derive shoreline positions from passive remote

sensing, which may be tested using HyspIRI VSWIR or similar

data. These include a single-band method that sets a threshold

separating land from water (Bayram et al., 2008), an edge-filter

method (Scott et al., 2003), and an unsupervised classification

method such as iterative self-organizing data-analysis classi-

fication (Armenakis et al., 2003). Similarly, other well-

developed indices, including the normalized-difference vegeta-

tion index (NDVI), defined as:

NDVI ¼ ðRNIR �RREDÞ=ðRNIR þ RREDÞ ð2Þ

where, R is reflectance, and the normalized-difference water

index (NDWI), defined as:

NDWI ¼ ðRGREEN �RNIRÞ=ðRGREEN þ RNIRÞ ð3Þ

are also used for water/land delineation as well as for flood

mapping (Domenikiotis, Loukas, and Dalezios, 2003; Jain et

al., 2005; Lunetta et al., 2006; McFeeters, 1996; Ouma and

Tateishi, 2006; Xu, 2006). A recently developed index for

delineating floating materials in the open ocean, namely, the

floating-algae index (Hu, Pichel, and Muller-Karger, 2009),

was also found to be effective in delineating the land-water

interface (Feng et al., 2012).

While each method in Eq. (2) and (3) has its own pros and

cons, the fundamental principle is the same: Water absorbs

light strongly in the NIR and SWIR wavelengths, resulting in a

much-reduced reflectance compared with other wavelengths

for the same image pixels or compared with other pixels for the

same wavelengths. For example, the absorption coefficient of

water at 1640 nm is 669 m�1. A 1-cm-thick layer of water over a

land surface will therefore reduce the land’s reflectance to a

factor of exp(�2 3 0.013 669)¼0.00015%, where the factor of 2

accounts for the two-way light attenuation. Likewise, a 1-mm-

thick water lens will reduce the reflectance to about 26%. In

other words, single-band images using these wavelengths will

appear dark over water and brighter over land. The various

methods simply seek efficient ways to extract this information

while minimizing the impact of the observing conditions or

increasing the computational efficiency.

A recent example of the use of Landsat 30-m-resolution data

to document decadal shoreline changes along central Florida’s

Figure 6. Standard deviation of CHL derived from monthly mean Aqua-

MODIS data from July 2002 to March 2013. Areas A through E represent the

Ross Sea, the Amundsen Sea, the Bellingshausen Sea, the Ronne Ice Shelf,

and the Weddell Sea, respectively.
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west coast is given by Yu et al. (2011) (Figure 7). The time-

series images were carefully selected to be within a tidal range

of 69 cm, such that the tidal influence on the shoreline

delineation would be known to an accuracy of within 1 Landsat

pixel for a shelf slope of 3%–24%. The high-latitude revisit

frequency of HyspIRI is close to several days, affording more

opportunities than Landsat to observe more rapid changes

along the coastlines (Oey et al., 2007).

In addition to Landsat imagery for shoreline detection,

Manzoc et al. (2015) demonstrated how hyperspectral field

radiometry and LIDAR remote sensing can be used to model

the effects of varying sediment properties upon reflectance

values under both field and laboratory conditions within the

field-spectral-libraries, airborne-hyperspectral-images, and to-

pographic-LIDAR (FHyL) procedure using a multisource data

set (airborne Hyperspectral– Multispectral Infrared Visible

Imaging Spectrometer [MIVIS] and topographic-LIDAR–

Hawk-Eye II and field radiometry). The results showed the

potential of hyperspectral signals to assess the effects of

moisture, grain size, and mineral composition upon sediment

properties. This research result suggests that HyspIRI mea-

surements will enable not only shoreline changes to be

determined, but also the biogeochemical constituents resulting

from disturbances by long-term sea-level changes and short-

term hurricane activities.

Furthermore, Smith et al. (2004) reported on a study aimed

at assessing the suitability of hyperspectral data for estimating

mudflat characteristics related to stability, wherein multiple-

regression analysis was used to show that hyperspectral

images and surface-sedimentary characteristics result in

distinct spectral signatures. This result suggests that the use

of hyperspectral data for the assessment of erosion, shear

stress, and surface stability (and thus the likely future

behavior of this dynamic environment) can contribute to a

significant improvement in the information required to

successfully manage shallow coastal systems. In addition,

Dierssen et al. (2003) estimated shallow-water bathymetry and

LAI of the seagrass Thalassia testudinum using a spectrally

based approach. They used two high-resolution images

obtained from the Ocean Portable Hyperspectral Imager for

Low-Light Spectroscopy (Ocean PHILLS) and found that

bathymetry was mapped to meter-scale resolution using a

site-specific relationship (r2¼0.97) derived from spectral ratios

of remote-sensing reflectance at 555 and 670 nm. The study

also reported that the magnitude of retrieved bottom reflec-

tance was highly correlated to seagrass LAI values within the

image as measured from diver surveys (r2¼ 0.88–0.98).

Thus, the unique capacity of HyspIRI, enabled by its high

spectral and spatial resolutions, will significantly enhance

current capabilities to accurately map shoreline changes,

floods, and shallow bottom bathymetry in targeted areas,

providing useful tools for managers, researchers, environmen-

tal groups, and the general public to monitor the well-being of

coastal zones.

Sensor Characteristics
Until recently hyperspectral sensors have been available

only on aircraft (Fearns et al., 2011; Lesser and Mobley, 2007;

Li et al., 2006; Ozesmi and Bauer, 2002; Rosso, Ustin, and

Hastings, 2005). Imaging spectrometers are now also available

in space, as on the Hyperion system, However, Hyperion has a

low SNR ratio (,100:1; Hu et al., 2012), and the mission is

nearing the end of its planned lifetime. HICO had a much

higher SNR, yet it was not a global mission, and it recently

terminated operation (Table 1).

HyspIRI, on the other hand, is a hyperspectral global mission

with a sufficiently high SNR. The projected SNR of HyspIRI

(Gao, 2010) is better than that of Hyperion and Landsat (Hu et

al., 2012, their Figure 8) or MODIS (Hu et al., 2012, their

Figure 7) and comparable to that of HICO (Lucke et al., 2011);

this SNR ratio is considered adequate for accurately retrieving

hyperspectral reflectance values from the water surface and

consequently evaluating aquatic water quality–related prop-

erties (Barbier, 2008). Furthermore, compared to HICO

measurements, HyspIRI provides additional TIR observations,

which are critically important for monitoring thermal varia-

tions in coastal regions due to groundwater runoff and river

discharges. Therefore, HyspIRI measurements will not only

current algorithms for estimating biogeochemical constituents

to be improved, but also new algorithms to be developed to

study sea-marginal processes.

The 1640 nm band enables highly accurate classification of

water and land pixels. However, for shoreline delineation and

flood mapping, several practical considerations are necessary

to assess HyspIRI’s accuracy. The first of these is the

geolocation accuracy of the individual pixels on satellite

images, which is often on the order of half of a pixel (root

mean square [RMS] uncertainties). For example, the highest

geolocation accuracy of MODIS data for a nadir view is about

150 m (Wolfe et al., 2002), about half of the 250 m pixel. For

Landsat data, the half-pixel accuracy often requires manual

Figure 7. Shoreline delineation from nine Landsat TM images covering

central west Florida near Lido Key. The inset image shows an example of

how the determined shoreline traces the land-water interface pixels. The two

white circles highlight the two shoreline sections that experienced opposite

shoreline changes (erosion and accretion). Figure adapted from Yu et al.

(2011).
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geo-rectification using known ground-control points (e.g., Yu et

al., 2011). Assuming that the principle is universal, the

HyspIRI land- and water-classification uncertainties will be

roughly half a pixel (i.e. about 30 m). The second consideration

is the influence of tides, which can range from centimeters to

meters, depending on their location. To achieve half-pixel

accuracy when delineating shorelines, tidal changes must be

restricted to a range that, after accounting for the slope of the

intertidal zone, will result in less than a half-pixel uncertainty

(Yu et al., 2011). Finally, the third consideration is the revisit

frequency. Due to the high spatial-resolution requirements,

HyspIRI may revisit the same place less frequently compared

with Landsat (16 days at the equator). This not only creates

difficulties in finding time-series data that meet the tidal-

change constraints for shoreline-change assessment, but it also

makes it difficult to perform flooding assessment because the

dry/wet conditions over land may change rapidly. Therefore,

for noteworthy flood events, the sensor may be tilted to assure

rapid response. Overall, although there are some potential

limitations to shoreline delineation and flood mapping, it is

possible to overcome these difficulties with engineering

advancements and algorithm improvements to achieve an

RMS accuracy of a half pixel. However, it should be noted that

this challenge is lessened at higher latitudes due to more

frequent coverage.

In summary, with radiometric capabilities comparable to or

better than those of the now-defunct HICO instrument,

HyspIRI is more suitable than Landsat for observing the

optical characteristics of water (Devred et al., 2013), especially

along shallow coastal areas. With its greater spectral range, the

HyspIRI mission should provide broader use than could HICO

in covering both aquatic and terrestrial features. HyspIRI also

offers global coverage, including latitudes above 45 degrees.

HyspIRI’s eight thermal bands will be more than adequate for

observing subtle variations in water-surface temperature,

which would be ideal for tracing freshwater or meltwater

fluxes along the water-land interface. Its VSWIR spectral

capabilities could then observe aquatic-biospheric responses to

contemporaneously observed coastal fluxes.

The Hyperion spectrometer on board Earth Observatory 1

(EO-1) is the only true hyperspectral sensor currently in orbit.

It has a spectral range and spectral and spatial resolutions

comparable to those of HyspIRI, but not extending into the

ultraviolet spectrum. However, Hyperion’s areal coverage is far

from global, and the proof-of-concept mission supported lower

radiometric resolutions. Further, the mission is currently

scheduled to conclude the EO-1 mission and de-orbit the

platform during the 2016 fiscal year, leaving no comparable

spaceborne hyperspectral capabilities for Earth observation.

The only plans to replace that capability include HyspIRI, the

Pre-Aerosol, Clouds and Ecosystems (PACE) mission (https://

pace.oceansciences.org/mission.htm), and Geostationary

Coastal and Air Pollution Events (GeoCAPE) mission (https://

science.jpl.nasa.gov/projects/Geo-Cape/). With 1000 and 250 m

pixels, respectively, PACE and GeoCAPE are far less capable of

making observations along the water-land interface. However,

their superior temporal resolution could complement HyspIRI

observations.

HyspIRI’s regular measurements can provide snapshots of

global coastal and inland waters. An important strength of

HyspIRI for studying these waters is its high spatial and

spectral resolutions. Specifically, issues of scale and interac-

tions between complex biophysical dynamics and ecosystem

responses could provide input into modeling studies for

important biogeochemical constituents.

CONCLUSIONS
The potential applications of the HyspIRI mission to the

study of changes in land/water/ice geomorphology have been

demonstrated using MODIS, Landsat, and other measure-

ments in this study. Future HyspIRI measurements will

provide better information than shown here, due to the

mission’s improved spatial and spectral resolutions. For the

same reasons, although the present discussions have focused

upon determining dynamic boundaries, HyspIRI will also

improve the accuracy of the retrieved biogeochemical proper-

ties of water, leading to better quantification of the environ-

mental changes resulting from short-term and long-term

dynamic boundary changes.
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