Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Dockyu | - |
dc.contributor.author | Park, Ha Ju | - |
dc.contributor.author | Kim, Jung Ho | - |
dc.contributor.author | Youn, Ui Joung | - |
dc.contributor.author | Yang, Yung Hun | - |
dc.contributor.author | Casanova-Katny, Angelica | - |
dc.contributor.author | Munoz Vargas, Cristina | - |
dc.contributor.author | Venegas, Erick Zagal | - |
dc.contributor.author | Park, Hyun | - |
dc.contributor.author | Hong, Soon Gyu | - |
dc.date.accessioned | 2020-04-24T05:49:12Z | - |
dc.date.available | 2020-04-24T05:49:12Z | - |
dc.date.issued | 2018-02 | - |
dc.identifier.uri | https://repository.kopri.re.kr/handle/201206/10504 | - |
dc.description.abstract | Although the maritime Antarctic has undergone rapid warming, the effects on indigenous soil-inhabiting microorganisms are not well known. Passive warming experiments using open-top chamber (OTC) have been performed on the Fildes Peninsula in the maritime Antarctic since 2008. When the soil temperature was measured at a depth of 2?5 cm during the 2013?2015 summer seasons, the mean temperature inside OTC (OTC-In) increased by approximately 0.8ºC compared with outside OTC (OTC-Out), while soil chemical and physical characteristics were not changed. Soils (2015 summer) from OTC-In and OTC-Out were subjected to analysis for change in microbial community and degradation rate of humic substances (HS, the largest pool of recalcitrant organic carbon in soil). Archaeal and bacterial communities in OTC-In were minimally affected by warming compared with those in OTC-Out, with archaeal methanogenic Thermoplasmata slightly increased in abundance. The abundance of heterotrophic fungi Ascomycota was significantly altered in OTC-In. Total bacterial and fungal biomass in OTC-In increased by 20% compared to OTC-Out, indicating that this may be due to increased microbial degradation activity for soil organic matter (SOM) including HS, which would result in the release of more low-molecular-weight growth substrates from SOM. Despite the effects of warming on the microbial community over the 8-years-experiments warming did not induce any detectable change in content or structure of polymeric HS. These results suggest that increased temperature may have significant and direct effects on soil microbial communities inhabiting maritime Antarctic. | en_US |
dc.language | English | - |
dc.language.iso | en | en_US |
dc.subject | Microbiology | en_US |
dc.subject.classification | King Sejong Station | en_US |
dc.title | Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region | en_US |
dc.title.alternative | 남극 토양온도 상승이 토양 미생물군집과 부식질 분해능에 미치는 영향 조사 | en_US |
dc.type | Article | en_US |
dc.identifier.bibliographicCitation | Kim, Dockyu, et al. 2018. "Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region". <em>JOURNAL OF BASIC MICROBIOLOGY</em>, 58(6): 513-522. | - |
dc.citation.title | JOURNAL OF BASIC MICROBIOLOGY | en_US |
dc.citation.volume | 58 | en_US |
dc.citation.number | 6 | en_US |
dc.identifier.doi | 10.1002/jobm.201700470 | - |
dc.citation.startPage | 513 | en_US |
dc.citation.endPage | 522 | en_US |
dc.description.articleClassification | SCI | - |
dc.description.jcrRate | JCR 2016:80.8 | en_US |
dc.subject.keyword | Antarctic soil | en_US |
dc.subject.keyword | degradation | en_US |
dc.subject.keyword | humic substances | en_US |
dc.subject.keyword | microbial community | en_US |
dc.identifier.localId | 2018-0022 | - |
dc.identifier.scopusid | 2-s2.0-85044260376 | - |
dc.identifier.wosid | 000434223300004 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.