KOPRI Repository

Sea Ice Type Classification with Optical Remote Sensing Data

Cited 0 time in wos
Cited 0 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorChi, Junhwa-
dc.contributor.authorKim, Hyun-cheol-
dc.date.accessioned2020-10-19T04:28:49Z-
dc.date.available2020-10-19T04:28:49Z-
dc.date.issued2018-12-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/10821-
dc.description.abstractOptical remote sensing sensors provide visually more familiar images than radar images. However, it is difficult to discriminate sea ice types in optical images using spectral information based machine learning algorithms. This study addresses two topics. First, we propose a semantic segmentation which is a part of the state-of-the-art deep learning algorithms to identify ice types by learning hierarchical and spatial features of sea ice. Second, we propose a new approach by combining of semi-supervised and active learning to obtain accurate and meaningful labels from unlabeled or unseen images to improve the performance of supervised classification for multiple images. Therefore, we successfully added new labels from unlabeled data to automatically update the semantic segmentation model. This should be noted that an operational system to generate ice type products from optical remote sensing data may be possible in the near future.en_US
dc.languageKoreanen_US
dc.language.isokoen_US
dc.subjectScience & Technology - Other Topicsen_US
dc.subject.classification해당사항없음en_US
dc.titleSea Ice Type Classification with Optical Remote Sensing Dataen_US
dc.title.alternative광학영상에서의 해빙종류 분류 연구en_US
dc.typeArticleen_US
dc.identifier.bibliographicCitationChi, Junhwa, Kim, Hyun-cheol. 2018. "Sea Ice Type Classification with Optical Remote Sensing Data". <em>Korean Journal of Remote Sensing</em>, 34(6-2): 1239-1249.-
dc.citation.titleKorean Journal of Remote Sensingen_US
dc.citation.volume34en_US
dc.citation.number6-2en_US
dc.identifier.doihttp://dx.doi.org/10.7780/kjrs.2018.34.6.2.8-
dc.citation.startPage1239en_US
dc.citation.endPage1249en_US
dc.description.articleClassificationKCI등재-
dc.description.jcrRateJCR 2016:0en_US
dc.subject.keywordActive learningen_US
dc.subject.keywordConvolutional neural networken_US
dc.subject.keywordDeep learningen_US
dc.subject.keywordSea iceen_US
dc.subject.keywordSemantic segmentationen_US
dc.subject.keywordSemi-supervised learningen_US
dc.identifier.localId2018-0433-
Appears in Collections  
2018-2018, Research on analytical technique for satellite observation of Arctic sea ice (18-18) / Kim, Hyun-cheol (PE18120)
2017-2018, Research on analytical technique for satellite observation of Arctic sea ice (17-18) / Kim, Hyun-cheol (PE17120; PE18120)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse