Emerging unprecedented lake ice loss in climate change projections
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lei Huang | - |
dc.contributor.author | Axel Timmermann | - |
dc.contributor.author | 이순선 | - |
dc.contributor.author | Keith B. Rodgers | - |
dc.contributor.author | Ryohei Yamaguchi | - |
dc.contributor.author | Chung, Eui-Seok | - |
dc.date.accessioned | 2022-10-25T16:36:47Z | - |
dc.date.available | 2022-10-25T16:36:47Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://repository.kopri.re.kr/handle/201206/14001 | - |
dc.description.abstract | Seasonal ice in lakes plays an important role for local communities and lake ecosystems. Here we use Large Ensemble simulations conducted with the Community Earth System Model version 2, which includes a lake simulator, to quantify the response of lake ice to greenhouse warming and to determine emergence patterns of anthropogenic lake ice loss. Our model simulations show that the average duration of ice coverage and maximum ice thickness are projected to decrease over the next 80 years by 38 days and 0.23 m, respectively. In the Canadian Arctic, lake ice loss is accelerated by the cold-season polar amplification. Lake ice on the Tibetan Plateau decreases rapidly due to a combination of strong insolation forcing and ice-albedo feedbacks. Comparing the anthropogenic signal with natural variability represented by the Large Ensemble, we find that lake ecosystems in these regions may be exposed to no-analogue ice coverage within the next 4-5 decades. | - |
dc.language | English | - |
dc.subject.classification | 해당사항없음 | - |
dc.title | Emerging unprecedented lake ice loss in climate change projections | - |
dc.title.alternative | 미래 기후변화 실험에 나타난 전례없는 호수 얼음의 감소 | - |
dc.type | Article | - |
dc.identifier.bibliographicCitation | Lei Huang, et al. 2022. "Emerging unprecedented lake ice loss in climate change projections". <em>NATURE COMMUNICATIONS</em>, 13(1): 1-12. | - |
dc.citation.title | NATURE COMMUNICATIONS | - |
dc.citation.volume | 13 | - |
dc.citation.number | 1 | - |
dc.identifier.doi | 10.1038/s41467-022-33495-3 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 12 | - |
dc.description.articleClassification | SCIE | - |
dc.description.jcrRate | JCR 2020:5.556 | - |
dc.identifier.localId | 2022-0172 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.