KOPRI Repository

Analysis and prediction of air quality in the Republic of Korea using Arctic/high-latitude climate variables in machine learning algorithms

Cited 0 time in wos
Cited 0 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorHo, Chang-Hoi-
dc.date.accessioned2023-07-26T16:31:01Z-
dc.date.available2023-07-26T16:31:01Z-
dc.date.issued2023-07-26-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/14518-
dc.identifier.urihttps://library.kopri.re.kr/search/detail/CATTOT000000055831-
dc.format.extent50-
dc.publisher서울대학교 산학협력단-
dc.titleAnalysis and prediction of air quality in the Republic of Korea using Arctic/high-latitude climate variables in machine learning algorithms-
dc.title.alternative머신 러닝 기법을 활용한 극지/고위도 기후와 우리나라 미세먼지의 연관성 분석 및 예측-
dc.typeResearch report-
dc.identifier.bibliographicCitationHo, Chang-Hoi. 2023. Analysis and prediction of air quality in the Republic of Korea using Arctic/high-latitude climate variables in machine learning algorithms. 50p.-
dc.identifier.localId2023-00372-
Appears in Collections  
2022-2022, Earth System Model-based Korea Polar Prediction System (KPOPS-Earth) Development and Its Application to the High-impact Weather Events originated from the Changing Arctic Ocean and Sea Ice (22-22) / Kim, Joo-Hong (PE22010)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse