The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jonathan D. Wille | - |
dc.contributor.author | Simon P. Alexander | - |
dc.contributor.author | Charles Amory | - |
dc.contributor.author | Rebecca Baiman | - |
dc.contributor.author | Leonard Barthelemy | - |
dc.contributor.author | Dana M. Bergstrom | - |
dc.contributor.author | Alexis Berne | - |
dc.contributor.author | Hanin Binder | - |
dc.contributor.author | Juliette Blanchet | - |
dc.contributor.author | Deniz Bozkurt | - |
dc.contributor.author | Thomas J. Bracegirdle | - |
dc.contributor.author | Mathieu Casado | - |
dc.contributor.author | Choi, Taejin | - |
dc.contributor.author | Kyle R. Clem | - |
dc.contributor.author | Francis Codron | - |
dc.contributor.author | Rajashree Datta | - |
dc.contributor.author | Stefano Di Battista | - |
dc.contributor.author | Vincent Favier | - |
dc.contributor.author | Diana Francis | - |
dc.contributor.author | Alexander D. Fraser | - |
dc.contributor.author | Elise Fourre | - |
dc.contributor.author | Rene D. Garreaud | - |
dc.contributor.author | Christophe Genthon | - |
dc.contributor.author | Irina V. Gorodetskaya | - |
dc.contributor.author | Sergi Gonzalez-Herrero | - |
dc.contributor.author | Victoria J. Heinrich | - |
dc.contributor.author | Guillaume Hubert | - |
dc.contributor.author | Hanna Joos | - |
dc.contributor.author | Kim, Seong-Joong | - |
dc.contributor.author | John C. King | - |
dc.contributor.author | Christoph Kittel | - |
dc.contributor.author | Amaelle Landais | - |
dc.contributor.author | Matthew Lazzara | - |
dc.contributor.author | Gregory H. Leonard | - |
dc.contributor.author | Jan L. Lieser | - |
dc.contributor.author | Michelle Maclennan | - |
dc.contributor.author | David Mikolajczyk | - |
dc.contributor.author | Peter Neff | - |
dc.contributor.author | Ines Ollivier | - |
dc.contributor.author | Ghislain Picard | - |
dc.contributor.author | Benjamin Pohl | - |
dc.contributor.author | Martin F. Ralph | - |
dc.contributor.author | Penny Rowe | - |
dc.contributor.author | Elisabeth Schlosser | - |
dc.contributor.author | Christine A. Shields | - |
dc.contributor.author | Inga J. Smith | - |
dc.contributor.author | Michael Sprenger | - |
dc.contributor.author | Luke Trusel | - |
dc.contributor.author | Danielle Udy | - |
dc.contributor.author | Tessa Vance | - |
dc.contributor.author | Etienne Vignon | - |
dc.contributor.author | Catherine Walker | - |
dc.contributor.author | Nander Wever | - |
dc.contributor.author | Xun Zou | - |
dc.date.accessioned | 2024-02-08T16:38:12Z | - |
dc.date.available | 2024-02-08T16:38:12Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://repository.kopri.re.kr/handle/201206/15182 | - |
dc.description.abstract | Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of -9.4° C on March 18 at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/mid-latitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heatwave’s meteorological drivers, impacts, and historical climate context. Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heatwave, an area of 3.3 million km2 in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about one hundred years, a closer recurrence of such an event is possible under future climate projections. In a subsequent manuscript, we describe the various impacts this extreme event had on the East Antarctic cryosphere. | - |
dc.language | English | - |
dc.subject.classification | Jang Bogo Station | - |
dc.title | The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers | - |
dc.title.alternative | 2022년 3월 동남극에서 발생한 이례적인 열파. 1: 관측과 기상학적 동인 | - |
dc.type | Article | - |
dc.identifier.bibliographicCitation | Jonathan D. Wille, et al. 2024. "The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers". <em>JOURNAL OF CLIMATE</em>, 37(3): 757-778. | - |
dc.citation.title | JOURNAL OF CLIMATE | - |
dc.citation.volume | 37 | - |
dc.citation.number | 3 | - |
dc.identifier.doi | 10.1175/JCLI-D-23-0175.1 | - |
dc.citation.startPage | 757 | - |
dc.citation.endPage | 778 | - |
dc.description.articleClassification | SCIE | - |
dc.description.jcrRate | JCR 2022:21.277 | - |
dc.subject.keyword | Atmospheric river | - |
dc.subject.keyword | East Antarctica | - |
dc.subject.keyword | Heat wave | - |
dc.subject.keyword | Indian Ocean | - |
dc.identifier.localId | 2023-0312 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.