KOPRI Repository

An architecting binder derived from Antarctic red algae to accelerate sulfur redox kinetics in Li-S batteries

Cited 0 time in wos
Cited 0 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorJung, Han Young-
dc.contributor.authorJung, Hyun Wook-
dc.contributor.authorKoo, Man Hyung-
dc.contributor.authorHong, Tae Hwa-
dc.contributor.authorKim, Dong Jun-
dc.contributor.authorLee, Jung Seok-
dc.contributor.authorLee, Yoon Hak-
dc.contributor.authorJang, Hyeonji-
dc.contributor.authorKim, Jin-Hyoung-
dc.contributor.authorKim, Sanghee-
dc.contributor.authorHeo, Eun Jin-
dc.contributor.authorLee, Seulah-
dc.contributor.authorYoun, Ui Joung-
dc.contributor.authorLee, Jung Tae-
dc.date.accessioned2025-10-22T02:30:18Z-
dc.date.available2025-10-22T02:30:18Z-
dc.date.issued2025-01-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/16144-
dc.description.abstractVolume changes during charge/discharge cycles can lead to substantial cracking, disrupting electron and ion transfer channels, and hindering the performance of lithium-sulfur (Li-S) batteries. Binders are crucial for mitigating these issues because they preserve the structural integrity of electrodes and ensure reliable operation. Herein, this study presents the first report of a hybrid carrageenan, Antarctic macroalgae Curdiea racovitzae-derived polysaccharide (CRP), consisting of a diverse-blocked copolymer including kappa, iota, mu, nu carrageenans, and porphyran as Li-S battery binders. CRP prevents binder agglomeration and enables the electrode to form a uniform 3D-network structure reminiscent of an ant tunnel, enhancing the electrolyte permeability and utilization of the sulfur species. Additionally, the abundant functional groups in CRP, such as sulfate and hydroxyl groups, facilitate efficient Li- ion transport. By leveraging these properties, the CRP-based sulfur electrode achieves a high initial capacity of similar to 1500 mAh g 1 at 0.1C, approximately 90 % of the theoretical capacity, and demonstrates superior cycle stability at 1C. Moreover, the Li2S nucleation rate was nearly 100 times higher compared to the PVDF-based sulfur electrode. The incorporation of a sustainable CRP binder in Li-S batteries marks a notable breakthrough, paving the way for future developments in the battery field.en_US
dc.languageEnglishen_US
dc.subject.classificationKing Sejong Stationen_US
dc.titleAn architecting binder derived from Antarctic red algae to accelerate sulfur redox kinetics in Li-S batteriesen_US
dc.title.alternative남극 홍조류 유래 리튬-황 전지의 황 산화환원 반응 가속화를 위한 구성 바인더en_US
dc.typeArticleen_US
dc.identifier.bibliographicCitationJung, Han Young, et al. 2025. "An architecting binder derived from Antarctic red algae to accelerate sulfur redox kinetics in Li-S batteries". <em>Materials Today</em>, 83(0): 231-241.-
dc.citation.titleMaterials Todayen_US
dc.citation.volume83en_US
dc.citation.number0en_US
dc.identifier.doi10.1016/j.mattod.2025.01.006-
dc.citation.startPage231en_US
dc.citation.endPage241en_US
dc.description.articleClassificationSCIE-
dc.description.jcrRateJCR 2023:3.645en_US
dc.subject.keywordLi-S batteriesen_US
dc.subject.keywordArchitecting binderen_US
dc.subject.keywordMultifunctional natural copolymeren_US
dc.subject.keywordAntarctic red algaeen_US
dc.identifier.localId2025-0005-
Appears in Collections  
2024-2024, 포스트 극지유전체 프로젝트: 극지 유용유전자 발굴을 위한 기능유전체 연구 (24-24) / 김진형 (PE24160)
2024-2024, 온난화로 인한 극지 서식환경 변화와 생물 적응진화 연구 (24-24) / 김상희 (PE24140)
Files in This Item
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse