KOPRI Repository

Possible influence of atmospheric circulations on winter haze pollution in the Beijing-Tianjin-Hebei region, northern China

Cited 72 time in wos
Cited 81 time in scopus
Title
Possible influence of atmospheric circulations on winter haze pollution in the Beijing-Tianjin-Hebei region, northern China
Authors
Zhang, Ziyin
Zhang, Xiaoling
Gong, Daoyi
Kim, Seong-Joong
Rui, Mao
Zhao, Xiujuan
Subject
Meteorology & Atmospheric Sciences
Keywords
Atmosphere circulationAir pollutionSiberian High
Issue Date
2016
Citation
Zhang, Ziyin, et al. 2016. "Possible influence of atmospheric circulations on winter haze pollution in the Beijing-Tianjin-Hebei region, northern China". Atmos. Chem. Phys., 16: 561-571.
Abstract
Using the daily records derived from the synoptic weather stations and the NCEP/NCAR and ERA-Interim reanalysis data, the variability of the winter haze pollution (indicated by the mean visibility and number of hazy days) in the Beijing?Tianjin?Hebei (BTH) region during the period 1981 to 2015 and its relationship with the atmospheric circulations at middle?high latitude were analyzed in this study. The winter haze pollution in BTH had distinct inter-annual and inter-decadal variabilities without a significant long-term trend. According to the spatial distribution of correlation coefficients, six atmospheric circulation indices (I1 to I6/ were defined from the key areas in sea level pressure (SLP), zonal and meridional winds at 850 hPa (U850, V850), geopotential height field at 500 hPa (H500), zonal wind at 200 hPa (U200), and air temperature at 200 hPa (T200), respectively. All of the six indices have significant and stable correlations with the winter visibility and number of hazy days in BTH. In the raw (unfiltered) correlations, the correlation coefficients between the six indices and the winter visibility (number of hazy days) varied from 0.57 (0.47) to 0.76 (0.6) with an average of 0.65 (0.54); in the high-frequency (< 10 years) correlations, the coefficients varied from 0.62 (0.58) to 0.8 (0.69) with an average of 0.69 (0.64). The six circulation indices together can explain 77.7% (78.7 %) and 61.7% (69.1 %) variances of the winter visibility and the number of hazy days in the year-to-year (inter-annual) variability, respectively. The increase in Ic (a comprehensive index derived from the six individual circulation indices) can cause a shallowing of the East Asian trough at the middle troposphere and a weakening of the Siberian high-pressure field at sea level, and is then accompanied by a reduction (increase) of horizontal advection and vertical convection (relative humidity) in the lowest troposphere and a reduced boundary layer height in BTH and its neighboring areas, which are favorable for the formation of haze pollution in BTH winter, and vice versa. The high level of the prediction statistics and the reasonable mechanism suggested that the winter haze pollution in BTH can be forecasted or estimated credibly based on the optimized atmospheric circulation indices. Thus it is helpful for government decision-making departments to take action in advance in dealing with probably severe haze pollution in BTH indicated by the atmospheric circulation conditions.
DOI
http://dx.doi.org/10.5194/acp-16-561-2016
Type
Article
Appears in Collections  
2014-2016, Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate for The Past and Present (14-16) / Kim, Seong-Joong (PE14010; PE15010; PE16010)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse