KOPRI Repository

Ramalin Isolated from Ramalina Terebrata Attenuates Atopic Dermatitis-like Skin Lesions in Balb/c Mice and Cutaneous Immune Responses in Keratinocytes and Mast Cells

Cited 9 time in wos
Cited 9 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorPark, Hye-Jin-
dc.contributor.authorPyo, Suhkneung-
dc.contributor.authorLee, Hong Kum-
dc.contributor.authorYim, Joung Han-
dc.contributor.authorJang, Yeon Jeong-
dc.date.accessioned2018-03-20T13:41:50Z-
dc.date.available2018-03-20T13:41:50Z-
dc.date.issued2016-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/6126-
dc.description.abstractAtopic dermatitis (AD) is a chronic inflammatory skin disease that involves eczematous skin lesions with pruritic erythematous papules. In this study, we investigated the mitigating effects of ramalin, a component of the Antarctic lichen Ramalina terebrata against AD in vivo and in vitro. Oral administration of ramalin lessened scratching behaviors and significantly reduced both serum immunoglobulin E and IL-4 levels, and mRNA levels of IL-4 and IL-10 in AD-induced Balb/c mice. In vitro, treatment with ramalin produced significantly less inflammatory chemokines and cytokines, including TARC, MCP-1, RANTES, and IL-8 in TNF-α-stimulated HaCaT cells. In addition, ramalin inhibited the activation of nuclear factor-kappa B as well as the phosphorylation of mitogen-activated protein kinases (MAPK). Furthermore, ramalin treatment resulted in decreased production of β-hexosaminidase and proinflammatory cytokines IL-4, IL-6, and TNF-α in 2,4 dinitrophenyl-human serum albumin-stimulated RBL-2H3 cells through blocking MAPK signaling pathways. The results suggest that ramalin modulates the production of immune mediators by inhibiting the nuclear factor-kappa B and MAPK signaling pathways. Taken together, ramalin effectively attenuated the development of AD and promoted the mitigating effects on Th2 cell-mediated immune responses and the production of inflammatory mediators in mast cells and keratinocytes. Thus, ramalin may be a potential therapeutic agent for AD.-
dc.languageEnglish-
dc.subjectPharmacology & Pharmacy-
dc.titleRamalin Isolated from Ramalina Terebrata Attenuates Atopic Dermatitis-like Skin Lesions in Balb/c Mice and Cutaneous Immune Responses in Keratinocytes and Mast Cells-
dc.typeArticle-
dc.identifier.bibliographicCitationPark, Hye-Jin, et al. 2016. "Ramalin Isolated from Ramalina Terebrata Attenuates Atopic Dermatitis-like Skin Lesions in Balb/c Mice and Cutaneous Immune Responses in Keratinocytes and Mast Cells". <em>PHYTOTHERAPY RESEARCH</em>, 30(12): 1978-1987.-
dc.citation.titlePHYTOTHERAPY RESEARCH-
dc.citation.volume30-
dc.citation.number12-
dc.identifier.doi10.1002/ptr.5703-
dc.citation.startPage1978-
dc.citation.endPage1987-
dc.description.articleClassificationSCI-
dc.description.jcrRateJCR 2014:41.176-
dc.subject.keywordBalb/c mice-
dc.subject.keywordatopic dermatitis-
dc.subject.keywordkeratinocyte-
dc.subject.keywordmast cell-
dc.subject.keywordramalin-
dc.identifier.localId2016-0304-
dc.identifier.scopusid2-s2.0-84983437619-
dc.identifier.wosid000389204700008-
Appears in Collections  
2011-2013, Utilization of novel metabolites from polar organisms (11-13) / Yim, Joung Han (PE11060, PE12040, PE13040)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse