KOPRI Repository

Evaluation of global land-to-ocean fresh water discharge and evapotranspiration using space-based observations

Cited 15 time in wos
Cited 15 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorWaliser-
dc.contributor.authorSeo, Ki-Weon-
dc.contributor.authorSyed-
dc.contributor.authorFamiglietti-
dc.contributor.authorTian-
dc.date.accessioned2018-03-20T13:48:12Z-
dc.date.available2018-03-20T13:48:12Z-
dc.date.issued2009-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/6283-
dc.description.abstractWe estimate global fresh water discharge from land-to-oceans (Q) and evapotranspiration (ET) on monthly time scales using a number of complimentary hydrologic data sets. This estimate is possible due to the new capability of measuring oceanic and land water mass changes from GRACE as well as the space-based measurements of oceanic and land precipitation (Pl) and oceanic evaporation. Monthly time series of Q show peaks in July and January, and those of ET show peaks in March, May and August. Our estimates of Q and ET are correlated with Pl indicating qualitatively that our estimates capture temporal patterns of Q and ET reasonably well. Comparison of our Q with two other previous estimates based on the Global Runoff Data Centre (GRDC) river gauges network shows that our maximum peak in Q occurs about a month later than previous estimates. In addition, we compare our estimation of Q and ET to 20th century simulations from the WCRP CMIP3 multi-model archive assessed in the IPCC 4th Assessment Report. Runoff (R) and ET from AOGCMs tend to only exhibit the annual cycle, but the Q estimated in this study exhibits additional semi-annual variations that exists in Pl as well. In addition, R from the models shows a maximum peak 2 months earlier than the estimated Q, which is due partly to the river discharge time lag that most AOGCMs do not take into account. These results indicate that current AOGCMs exhibit basic shortcomings in simulating Q and ET accurately. The new method developed here can be a useful constraint on these models and can be useful to close budget of global water balance.-
dc.languageEnglish-
dc.publisherElsevier-
dc.subjectEngineering-
dc.subjectGeology-
dc.titleEvaluation of global land-to-ocean fresh water discharge and evapotranspiration using space-based observations-
dc.title.alternative인공위성 원격탐사를 이용한 전구 discharge의 양과 증발산량 계산-
dc.typeArticle-
dc.identifier.bibliographicCitationWaliser, et al. 2009. "Evaluation of global land-to-ocean fresh water discharge and evapotranspiration using space-based observations". <em>Journal of Hydrology</em>, 373(4): 508-515.-
dc.citation.titleJournal of Hydrology-
dc.citation.volume373-
dc.citation.number4-
dc.identifier.doi10.1016/j.jhydrol.2009.05.014-
dc.citation.startPage508-
dc.citation.endPage515-
dc.description.articleClassificationSCI-
dc.description.jcrRateJCR 2007:21.16788321167883-
dc.subject.keywordEvapotranspiration-
dc.subject.keywordGRACE-
dc.subject.keywordRemote sensing-
dc.subject.keywordRiver Discharge-
dc.subject.keywordWater Resources-
dc.identifier.localId2009-0107-
dc.identifier.scopusid2-s2.0-74249085947-
dc.identifier.wosid000268406400021-
Appears in Collections  
2006-2010, Formation, evolution and neotectonics of Antarctica (06-10) / Lee, Jong Ik; Cheo, Moon Young (PE06020, PE08020, PE09020, PE10020, PE07020)
2009-2011, Interactions between Polar Climate Systems -Cryosphere, Marine Biosphere and Atmosphere- using Satellite (09-11) / Kim, Hyun-cheol (PG10030, PG09030, PG08010, PG09020)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse