KOPRI Repository

Decorrelation scales for Arctic Ocean hydrography ? Part I: Amerasian Basin

Cited 5 time in wos
Cited 6 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorHiroshi Sumata-
dc.contributor.authorTakashi Kikuchi-
dc.contributor.authorCho, Kyoung-Ho-
dc.contributor.authorKoji Shimada-
dc.contributor.authorUrsula Schauer-
dc.contributor.authorRudiger Gerdes-
dc.contributor.authorAxel Behrendt-
dc.contributor.authorMary-Louise Timmermans-
dc.contributor.authorBenjamin Rabe-
dc.contributor.authorMichael Karcher-
dc.contributor.authorFrank Kauker-
dc.date.accessioned2018-03-20T14:01:41Z-
dc.date.available2018-03-20T14:01:41Z-
dc.date.issued2018-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/6565-
dc.description.abstractAny use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150?200?km in space and 100?300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.-
dc.languageEnglish-
dc.subject.classificationAraon-
dc.titleDecorrelation scales for Arctic Ocean hydrography ? Part I: Amerasian Basin-
dc.title.alternative북극해 수리학에 대한 비상관성 규모 연구 - 파트1: 어메라시안 분지-
dc.typeArticle-
dc.identifier.bibliographicCitationHiroshi Sumata, et al. 2018. "Decorrelation scales for Arctic Ocean hydrography ? Part I: Amerasian Basin". <em>OCEAN SCIENCE</em>, 14(1): 161-185.-
dc.citation.titleOCEAN SCIENCE-
dc.citation.volume14-
dc.citation.number1-
dc.identifier.doi10.5194/os-14-161-2018-
dc.citation.startPage161-
dc.citation.endPage185-
dc.description.articleClassificationSCIE-
dc.description.jcrRateJCR 2016:19.047619047619-
dc.subject.keywordArctic observation data-
dc.subject.keywordautocorrelation-
dc.subject.keyworddata assimilation-
dc.identifier.localId2018-0021-
dc.identifier.scopusid2-s2.0-85042866699-
dc.identifier.wosid000426754300001-
Appears in Collections  
2016-2018, Korea-Arctic Ocean Observing System(K-AOOS) (16-18) / Kang, Sung-Ho (PM16040; PM17040)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse