KOPRI Repository

Age, Geochemistry, and Sr-Nd-Pb isotopic compositions of volcanic rocks from Mt. Melbourne and the western Ross Sea, Antarctica

Cited 0 time in wos
Cited 0 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorLee, Mi Jung-
dc.contributor.authorNagao, Keisuke-
dc.contributor.authorLee, Jong Ik-
dc.contributor.authorKim, Taehoon-
dc.description.abstractNew K/Ar ages and geochemical and isotope data (Sr, Nd, Pb) of submarine samples from the Terror Rift Region and subaerial lavas from Mt. Melbourne Volcanic Field (MMVF) in the western Ross Sea, are presented. The MMVF samples are classified into Groups A and B based on their temporal and spatial distribution. All samples are alkaline, ranging from basanite to trachybasalt, and exhibit the Ocean Island Basalt (OIB)-like patterns of trace element distribution, with a prominent depletion in K and Pb. They exhibit an HIMU-like isotopic signature (206Pb/204Pb = 18.510?19.683, 87Sr/86Sr = 0.70300?0.70398, 143Nd/144Nd = 0.51284?0.51297) and trace element affinities (Ce/Pb = 25?35, Nb/U = 45?60, Ba/Nb = 5?13, La/Nb = 0.5?0.9). New K/Ar ages and geochemical data, combined with published data, show no correlations between age and composition of Cenozoic basalts in NVL. The Terror Rift submarine lavas (0.46?0.57 Ma) display a distinct trend, with more primitive geochemical characteristics (higher MgO (7.2?9.8 wt.%) and CaO (9.9?11.9 wt%) and stronger HIMU signature (higher 206Pb/204Pb and less radiogenic 87Sr/86Sr and 143Nd/144Nd ratios) than those of MMVF basalts. Results from a rare earth element (REE) model suggest that the Terror Rift submarine lavas are derived from small degrees (1?2%) of partial melting of an amphibole-bearing garnet peridotite mantle source. Despite the distinctly different ages and locations of the MMVF Group A (0.16?0.33 Ma) and B (1.25?1.34 Ma) basalts, they show similar geochemical and isotopic features, indicating the sharing of common mantle sources and magma processes during magma generation. Incompatible trace element ratios (e.g., Ba/Nb = 6.4?13.2, La/YbN = 14.4?23.2, Dy/Yb = 2.2?3.0) and isotopic compositions of the MMVF Group A and B volcanics suggest derivation from higher degrees (2?5%) of partial melting of a garnet peridotite source and strong influence of an EMI-type mantle source. The stronger HIMU signature of the Terror Rift submarine lavas appears to be related to smaller degrees of partial melting, suggesting preferential sampling of the HIMU component in the less partially melted rocks from the Cenozoic NVL magmatism. In contrast, the higher degree of MMVF A and B magmas can be explained by greater interaction with heterogeneous lithospheric mantle, resulting in a diluted HIMU signature compared with that of the Terror Rift submarine lavas.-
dc.titleAge, Geochemistry, and Sr-Nd-Pb isotopic compositions of volcanic rocks from Mt. Melbourne and the western Ross Sea, Antarctica-
dc.title.alternative남극 멜버른 화산의 연대, 지구화학, 동위원소 조성 연구-
dc.identifier.bibliographicCitationLee, Mi Jung, et al. 2015. Age, Geochemistry, and Sr-Nd-Pb isotopic compositions of volcanic rocks from Mt. Melbourne and the western Ross Sea, Antarctica. 12th International Symposium on Antarctic Earth Sciences. 인도 고아 메리어트호텔. 2015.07.13~2015.07.17.-
dc.citation.conferenceName12th International Symposium on Antarctic Earth Sciences-
dc.citation.conferencePlace인도 고아 메리어트호텔-
Appears in Collections  
2014-2018, Crustal evolution of Victoria Land, Antarctica, and the formative process of planets (14-18) / Lee, Jong Ik
Files in This Item
General Conditions
      ROMEO Green
    Can archive pre-print and post-print or publisher's version/PDF
      ROMEO Blue
    Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
      ROMEO Yellow
    Can archive pre-print (ie pre-refereeing)
      ROMEO White
    Archiving not formally supported

    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.