KOPRI Repository

Machine learning-based temporal mixture analysis of hyptertemporal Antarctic sea ice data

Cited 5 time in wos
Cited 4 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorChi, Junhwa-
dc.contributor.authorKang, Sung-Ho-
dc.contributor.authorKim, Hyun-cheol-
dc.description.abstractHypertemporal image (HTI) is often used to exploit the seasonal characteristics of environmental phenomena such as sea ice concentration (SIC). However, it is difficult to analyse the long-term time series acquired at high temporal frequencies and over extensive areas. This study performed temporal mixture analysis (TMA), which is algebraically similar to spectral mixture analysis (SMA), but occurs in the time domain instead of the spectral domain. TMA was used to investigate the temporal characteristics of Antarctic sea ice. Because endmember (EM) selection is critical to the success of both SMA and TMA, it is important to select proper EMs from large quantities of HTI. In this study, a machine learning (ML) technique is incorporated in identifying EMs without prior information to address the limitations of previous research. A fully linear mixing model was then implemented in an attempt to produce more robust and physically meaningful abundance estimates. Experiments that quantitatively and qualitatively evaluated the proposed approaches were conducted. A TMA of high-temporal-dimensional data provides a unique summary of long-term Antarctic sea ice and noise-whitened reconstruction images via inverse processing. Furthermore, comparisons of regional sea ice fractions from experimental results enhance the understanding of the overall Antarctic sea ice changes.-
dc.titleMachine learning-based temporal mixture analysis of hyptertemporal Antarctic sea ice data-
dc.identifier.bibliographicCitationChi, Junhwa, Kang, Sung-Ho, Kim, Hyun-cheol. 2016. "Machine learning-based temporal mixture analysis of hyptertemporal Antarctic sea ice data". <em>REMOTE SENSING LETTERS</em>: 190-199.-
dc.citation.titleREMOTE SENSING LETTERS-
dc.description.jcrRateJCR 2014:57.142-
dc.subject.keywordHyptertemporal data-
dc.subject.keywordMachine learning-
dc.subject.keywordRemote sensing-
dc.subject.keywordSea ice concentration-
dc.subject.keywordTemporal mixture analysis-
Appears in Collections  
2014-2016, SaTellite Remote Sensing on West Antarctic Ocean Research (STAR) (14-16) / Kim; Hyun-cheol
2011-2016, Korea Polar Ocean in Rapid Transition (K-PORT) / Kang; Sung-Ho
Files in This Item
General Conditions
      ROMEO Green
    Can archive pre-print and post-print or publisher's version/PDF
      ROMEO Blue
    Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
      ROMEO Yellow
    Can archive pre-print (ie pre-refereeing)
      ROMEO White
    Archiving not formally supported

    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.