A key process of the nonstationary relationship between ENSO and the Western Pacific teleconnection pattern
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Young-Hyang | - |
dc.contributor.author | Isabelle, Durand | - |
dc.contributor.author | Frederic, Vivier | - |
dc.contributor.author | Yamamoto, Masaru | - |
dc.contributor.author | Pak, Gyundo | - |
dc.contributor.author | Kim, Baek-Min | - |
dc.date.accessioned | 2019-01-17T09:16:53Z | - |
dc.date.available | 2019-01-17T09:16:53Z | - |
dc.date.issued | 2018-06-22 | - |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.uri | https://repository.kopri.re.kr/handle/201206/9522 | - |
dc.description.abstract | Recent studies have discovered an intriguing nonstationary relationship between El Nino?Southern Oscillation (ENSO) and the Western Pacific (WP) teleconnection pattern, one of the most prominent winter atmospheric circulation patterns in the North Pacific, with a regime-dependent interdecadal modulation of significant and insignificant correlations. However, the physical process underlying the observed nonstationary ENSO-WP relationship is a puzzle and remains to be elucidated, which is also essential for clarifying the still-debated nontrivial issue on whether the WP is directly forced by ENSO or by midlatitude storm tracks-driven intrinsic processes. Based on empirical orthogonal function(EOF) analysis of the upper-tropospheric teleconnection patterns and associated Rossby wave sources(RWS), we show that the nonstationarity in question is due to the regime-dependent constructive or destructive interference in meridional overturning circulation between the two leading EOFs of RWS best correlated with ENSO and WP, respectively. The observed insignificant correlation between ENSO and the WP after the 1988 regime shift can be explained by interrupted teleconnection between the tropics and high latitudes due to the collapse of the subtropical bridge pillar in the jet entrance region, consequence of the destructive interference. This suggested interference mechanism related to the regime-dependent upper-level RWS fields has significant implications for resolving the puzzle that hinders better understanding of decadal regime behaviors of the climate system in the North Pacific. | en_US |
dc.language | Korean | - |
dc.language.iso | en | en_US |
dc.publisher | NATURE PUBLISHING GROUP, MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND | en_US |
dc.subject | Science & Technology - Other Topics | en_US |
dc.subject.classification | 해당사항없음 | en_US |
dc.title | A key process of the nonstationary relationship between ENSO and the Western Pacific teleconnection pattern | en_US |
dc.title.alternative | ENSO와 서태평양 원격 연결 패턴 간의 비 정적 관계의 주요 과정 | en_US |
dc.type | Article | en_US |
dc.identifier.bibliographicCitation | Park, Young-Hyang, et al. 2018. "A key process of the nonstationary relationship between ENSO and the Western Pacific teleconnection pattern". <em>SCIENTIFIC REPORTS</em>, 8(0): 9512-NaN. | - |
dc.citation.title | SCIENTIFIC REPORTS | en_US |
dc.citation.volume | 8 | en_US |
dc.citation.number | 0 | en_US |
dc.identifier.doi | 10.1038/s41598-018-27906-z | - |
dc.citation.startPage | 9512 | en_US |
dc.citation.endPage | NaN | en_US |
dc.description.articleClassification | SCI | - |
dc.description.jcrRate | JCR 2016:15.625 | en_US |
dc.subject.keyword | ENSO | en_US |
dc.identifier.localId | 2018-0117 | - |
dc.identifier.scopusid | 2-s2.0-85048949540 | - |
dc.identifier.wosid | 000436046500026 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.