KOPRI Repository

Deep learning based retrieval algorithm for Arctic sea ice concentration from AMSR2 passive microwave and MODIS optical data

Cited 14 time in wos
Cited 15 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorChi, Junhwa-
dc.contributor.authorKim, Hyun-cheol-
dc.contributor.authorLee, sungjae-
dc.contributor.authorCrawford, Melba M.-
dc.date.accessioned2020-10-20T06:23:27Z-
dc.date.available2020-10-20T06:23:27Z-
dc.date.issued2019-09-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/10919-
dc.description.abstractThis study applies deep learning (DL) to retrieve Arctic sea ice concentration (SIC) from AMSR2 data. MODIS-derived SICs are calculated based on spectral unmixing with a new ice/water endmember extraction algorithm that exploits global/local representatives, and then used to train a DL network with AMSR2 data. The resulting SIC maps outperform popular SIC products both regionally and globally. The RMSE of the proposed DL model is 5.19, whereas those of the widely used Bootstrap and ASI-based SIC images are 6.54 and 7.38, respectively, with respect to MODIS-derived SICs at global scale. In particular, our proposed method better describes regions of low-SIC and melting ice in summer, which are generally difficult-to-estimate. As the DL-based model consistently generates accurate SIC values that are not time- or region-dependent, it is considered to be an operational system. Additionally, our SICs can be used to generate initial conditions facilitating development of more accurate climate models.en_US
dc.languageEnglishen_US
dc.language.isoenen_US
dc.subjectEnvironmental Sciences & Ecologyen_US
dc.subjectRemote Sensingen_US
dc.subjectImaging Science & Photographic Technologyen_US
dc.subject.classification해당사항없음en_US
dc.titleDeep learning based retrieval algorithm for Arctic sea ice concentration from AMSR2 passive microwave and MODIS optical dataen_US
dc.title.alternative수동마이크로파와 광학원격탐사자료를 이용한 딥러닝 기반 북극 해빙농도 산출 연구en_US
dc.typeArticleen_US
dc.identifier.bibliographicCitationChi, Junhwa, et al. 2019. "Deep learning based retrieval algorithm for Arctic sea ice concentration from AMSR2 passive microwave and MODIS optical data". <em>REMOTE SENSING OF ENVIRONMENT</em>, 231(1): 111204-0.-
dc.citation.titleREMOTE SENSING OF ENVIRONMENTen_US
dc.citation.volume231en_US
dc.citation.number1en_US
dc.identifier.doi10.1016/j.rse.2019.05.023-
dc.citation.startPage111204en_US
dc.citation.endPage0en_US
dc.description.articleClassificationSCI-
dc.description.jcrRateJCR 2017:3.333en_US
dc.subject.keywordSpectral unmixingen_US
dc.subject.keywordSpectral mixture analysisen_US
dc.subject.keywordEndmember extractionen_US
dc.subject.keywordMachine learningen_US
dc.subject.keywordNeural networken_US
dc.identifier.localId2019-0107-
dc.identifier.scopusid2-s2.0-85066477410-
dc.identifier.wosid000484643900002-
Appears in Collections  
2019-2019, Research on analytical technique for satellite observation of Arctic sea ice (19-19) / Kim, Hyun-cheol (PE19120)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse