Crystal structure of a MarR family protein from the psychrophilic bacterium Paenisporosarcina sp. TG-14 in complex with a lipid-like molecule
Cited 0 time in
Cited 0 time in
-
Title
-
Crystal structure of a MarR family protein from the psychrophilic bacterium Paenisporosarcina sp. TG-14 in complex with a lipid-like molecule
-
Other Titles
-
저온성 미생물 (Paenisporosarcina sp. TG-14) 유래 lipid-like molecule 이 결합된 형태의 MarR 단백질 구조 연구
-
Authors
-
Hwang, Jisub
Park, Sun-Ha
Lee, Chang Woo
Do, Hackwon
Shin, Seung Chul
Kim, Han-Woo
Lee, Sung Gu
Park, Hyun Ho
Kwon, Sunghark
Lee, Jun Hyuck
-
Subject
-
Chemistry; Crystallography; Materials Science
-
Keywords
-
MarR family proteins; transcription factors; psychrophilic bacteria; Paenisporosarcina sp. TG-14; palmitic acid; conformational change; protein structure; molecular recognition
-
Issue Date
-
2021
-
Citation
-
Hwang, Jisub, et al. 2021. "Crystal structure of a MarR family protein from the psychrophilic bacterium Paenisporosarcina sp. TG-14 in complex with a lipid-like molecule". IUCRJ, 8: 842-852.
-
Abstract
-
MarR family proteins regulate the transcription of multiple antibiotic-resistance genes and are widely found in bacteria and archaea. Recently, a new MarR family gene was identified by genome analysis of the psychrophilic bacterium Paenisporosarcina sp. TG-14, which was isolated from sediment-laden basal ice in Antarctica. In this study, the crystal structure of the MarR protein from Paenisporosarcina sp. TG-14 (PaMarR) was determined at 1.6 angstrom resolution. In the crystal structure, a novel lipid-type compound (palmitic acid) was found in a deep cavity, which was assumed to be an effector-binding site. Comparative structural analysis of homologous MarR family proteins from a mesophile and a hyperthermophile showed that the DNA-binding domain of PaMarR exhibited relatively high mobility, with a disordered region between the beta 1 and beta 2 strands. In addition, structural comparison with other homologous complex structures suggests that this structure constitutes a conformer transformed by palmitic acid. Biochemical analysis also demonstrated that PaMarR binds to cognate DNA, where PaMarR is known to recognize two putative binding sites depending on its molar concentration, indicating that PaMarR binds to its cognate DNA in a stoichiometric manner. The present study provides structural information on the cold-adaptive MarR protein with an aliphatic compound as its putative effector, extending the scope of MarR family protein research.
-
URI
-
https://repository.kopri.re.kr/handle/201206/13009
-
DOI
-
http://dx.doi.org/10.1107/S2052252521005704
-
Type
-
Article
-
Station
-
King Sejong Station
-
Indexed
-
SCIE
- Appears in Collections
- 2021-2021, Investigation of ice microstructure properties for developing low-temperature purification and environment/energy materials (21-21) / Kim, Kitae (PE21120)
2021-2021, Development of potential candidates as antibiotics based on polar genetic resources (21-21) / Lee, Jun Hyuck (PM21030)
- Files in This Item
-
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.