KOPRI Repository

Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin

Cited 7 time in wos
Cited 7 time in scopus
Title
Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin
Other Titles
젠투펭귄 유래 지방산 결합단백질의 구조 연구
Authors
Lee, Chang Woo
Lee, Jun Hyuck
Kim, Il-Chan
Park, Hyun
Yim, Joung Han
Jeong Ho Chang
Hyun Ho Park
Lee, Sung Gu
Ryeo-Ok Kim
Hackwon Do
Kim, Jung Eun
Keywords
Fatty acid-binding proteinGentoo penguin (Pygoscelis papua)X-ray crystallographycrystal structureβ-barrel protein
Issue Date
2015
Citation
Lee, Chang Woo, et al. 2015. "Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin". BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 465(1): 12-18.
Abstract
Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 A, 2.2 A, and 2.3 A, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions.
URI
https://repository.kopri.re.kr/handle/201206/7355
DOI
http://dx.doi.org/10.1016/j.bbrc.2015.07.087
Type
Article
Indexed
SCI
Appears in Collections  
2014-2016, Antarctic Organisms: Cold-Adaptation Mechanism and Its Application (14-16) / Park; Hyun (PE14070; PE15070; PE16070)
2011-2016, Exploration of Future Resources in The Polar Oceans and Study on Their Utilization (K-POD) (11-16) / Yim; Joung Han (PM11090; PM12030; PM13030; PM14050; PM15050)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse