KOPRI Repository

Applications of cryogenic method to water vapor sampling from ambient air for isotopes analysis

Cited 0 time in wos
Cited 3 time in scopus
Metadata Downloads
Applications of cryogenic method to water vapor sampling from ambient air for isotopes analysis
Other Titles
수증기 동위원소 측정을 위한 저온채집법에 대한 연구
Kim, Songyi
Lee, Jeonghoon
Hur, Soon Do
Han, Yeongcheol
교차 검증; 수증기 동위원소; 저온채집방법; 직렬 연결 실험
Issue Date
Kim, Songyi, et al. 2016. "Applications of cryogenic method to water vapor sampling from ambient air for isotopes analysis". Ocean and Polar Research, 38(4): 339-345.
Stable water vapor isotopes have been utilized as a tracer for studying atmospheric global circulations, climate change and paleoclimate with ice cores. Recently, since laser spectroscopy has been available, water vapor isotopes can be measured more precisely and continuously. Studies of water vapor isotopes have been conducted over the world, but it is the early stage in south Korea. For vapor isotopes study, a cryogenic sampling device for water vapor isotopes has been developed. The cryogenic sampling device consists of the dewar bottle, filled with extremely low temperature material and impinger connected with a vacuum pump. Impinger stays put in the dewar bottle to change the water vapor which passes through the inside of impinger into the solid phase as ice. The fact that water vapor has not sampled completely leads to isotopic fractionation in the impinger. To minimize the isotopic fractionation during sampling water vapor, we have tested the method using a serial connection with two sets of impinger device in the laboratory. We trapped 98.02% of water vapor in the first trap and the isotopic difference of the trapped water vapor between two impinger were about 20‰ and 6‰ for hydrogen and oxygen, respectively. Considering the amount of water vapor trapped in each impinger, the isotopic differences for hydrogen and oxygen were 0.33‰ and 0.06‰, respectively, which is significantly smaller than the precision of isotopic measurements. This work can conclude that there is no significant fractionation during water vapor trapping.
Files in This Item
General Conditions
      ROMEO Green
    Can archive pre-print and post-print or publisher's version/PDF
      ROMEO Blue
    Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
      ROMEO Yellow
    Can archive pre-print (ie pre-refereeing)
      ROMEO White
    Archiving not formally supported

    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.